Noninvasive assessment of pulmonary edema using machine learning
Heart failure is the number one cause of hospitalization in the United States, with high readmission and mortality rates. Effective treatment for acute heart failure depends on the accurate measurement of fluid overload in the lungs, known as pulmonary edema, but this is challenging and costly. This team uses machine learning algorithms to automatically assess the severity of pulmonary edema from chest X-ray images. Combined with other clinical measurements, the project’s unique fluid status visualization will provide accurate, noninvasive, longitudinal tracking of pulmonary edema, and of patients’ response to treatment. This visualization will enable physicians to deliver better targeted therapies.
Accurate tracking of pulmonary edema
Heart failure is the number one cause of hospitalization in the United States, with high readmission and mortality rates. Effective treatment for acute heart failure depends on the accurate measurement of fluid overload in the lungs, known as pulmonary edema, but this is challenging and costly. This team uses machine learning algorithms to automatically assess the severity of pulmonary edema from chest X-ray images. Combined with other clinical measurements, the project’s unique fluid status visualization will provide accurate, noninvasive, longitudinal tracking of pulmonary edema, and of patients’ response to treatment. This visualization will enable physicians to deliver better targeted therapies.
Empallo
The technology from this project was spun out into a company in 2023.
Read about the team’s research in MIT News
Read the team’s papers: